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ABSTRACT

A device is repaired at failure. With probability p, it is returned

to the "good as new" state (perfect repair), with probability I - p it is

returnedto the functioning state, but it is only as good as a device of

age equal to its age at failure (imperfect repair). Repair takes negligible

time. We obtain the distribution Fp of the interval between successive

good as new states in terms of the underlying life distribution F. We

show that if F is in any of the life distribution classes: IFR, DFR,

IFRA, DFRA, NEJ, NWU, ML, or UAL, then F is in the sume class. Finally,

we obtain a mmber of monotonicity properties for various parameters and

ramd variables of the stochastic process. The results obtained are of

interest in the context of stochastic processes in general, as well as

being useful in the particular imperfect repair model studied.
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Imperfect Repair.

1. Introduction and Sumary.

It is well known in practice that repair of a failed item may not yield

a functioning item which is "as good as new". In this paper, we treat a

model for imperfect repair somewhat related to the model of 'hnlimal repair

at failure". See Barlow and Proschan (1965), pp. 96-98. Our results may

be of interest in renewal theory as well as in reliability theory.

1.1. Nodel. An item is repaired at failure. With probability p,

it is returned to the "good as new" state (perfect repair), with probability

q a 1 - p, it is returned to the functioning state, but it is only as good

as an item of age equal to its age at failure (imperfect repair). Repair

takes negligible time. The process of alternating failure and repair

continues indefinitely over time; we call it a failure process.

Suppose the item has underlying life distribution F. To avoid in-

essential technicalities, we assume the failure rate function r(t) exists.

In Section 2, we obtain the distribution Fp of the interval between

successive good-as-new states (regeneration points of the stochastic

process). We show that the failure rate function of F is simply p r(t).
p

Although the proof is trivial, the result is interesting in two ways:

(1) It furnishes useful information in the imperfect repair model of

1.1.

(2) It shows how devices with proportional failure rates or proportional

hazard functions my arise in a naturally occurring physical situation.

We show in Section 2 that if F is in any of the classes: IFR, DR,

IFRA, DR, NEU, NWUj, OfL, or DESL, then Fp is in the same class. We are

unable to obtain a corresponding preservation reslt for F M or F IME,

although we conjectire such a result holds.
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In Section 3, we derive a variety of monotonicity properties and

inequalities for various parameters and random variables of interest.

For example, for F NIJE, the mean time u(p) between perfect repairs is

bounded above by I (). (Note that P(l) is the mean of F.) Under slightly
p

stronger assumptions, p p(p) is shown to be increasing in p e (0, IJ. We

also show that for F NJJ(NW), the nmber N (t) of failures in [0, t) is
p

stochastically decreasing (increasing) in p. We also obtain mnnotonicity

results for the waiting time until the next failure starting in the steady

state of the failure process assuming first F IFR(DFR) and alternatively

F 94RL (IRL). Finally, for F DFR we obtain a variety of uMtonicity

results for the waiting time until the next failure in the transient state.

The methods used in obtaining the results described above are of

interest in their own right. They should be applicable in other stochastic

processes.

Also, the imperfect repair model treated in this paper appears to be

useful in studying properties of proportional hazard families of distributions.

One final word: The problem of imperfect and even destructive repair

is an iportant practical one in reliability, although few results are

available in the statistical literature. We are preparing additional

papers studying other aspects of this problem.
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2. Preservation of Aging Properties.

To obtain our first result, note that the choice of p = 0 results in

a nonhomgeneous Poisson process with intensity function r(t). This process

has the same distribution as the process of upper record values derived from

i.i.d. observations with distribution F. Specifically, let {Xi , i k 1) be

i.i.d. observations from F. Define Y I X1I N2  (m i: Xi > XI} Y2 
= X2

2
N3 = (in i: Xi > Y2), Y3 - XN3 ' etc. Then (Yi. i a 1) generates a nonhomogeneous

Poisson process with intensity function r(t).

The choice 0 < p < I leads to a process in which the time epochs of perfect

repairs are regeneration points. The interval between successive regeneration

points is the waiting time for a perfect repair starting with a new component.

Let Fp denote the waiting time distribution for a perfect repair starting

with a now component. Let rp denote its failure rate function. Then we show:

2.1. Lama. (i) rp(t) - pr(t). (ii) Ir (t) - PP(t).
p p

Proof. (i) Given that no perfect repairs occur in EO, t), the item

present at time t behaves as an item of age t. Its failure rate is thus r(t).

After a failure occurs, repair is perfect with probability p. Thus the condi-

tional intensity of a perfect repair at time t given no perfect repairs in

O, t) is rp(t) - -r(t).

(ii) Since Fp(t) = p-f rp(s)ds}, it follows that V (t) - PP(t). II
Since the original failure rate function is simply multiplied by p, it follows

that my of the important classes of distributions characterized by aging

properties are preserved in the following sense: If F has a given aging

property, then Fp also has this property for 0 < p < 1. We state this formally

in:

Malli
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2.2. Theorem. Let F be in any of the classes: IFR, DFR, IFRA, DFRA, NBU,

NW, filL, or IRL. Then F is in the same class.
p

Proof. For the first six classes, the conclusion follows directly from

SC~t) - Crt).

Suppose now F is IM. Let Y have distribution Fp. Define -k(t) to be
the time of the kth failure after tine t. Since for s < t, Tk(S) S rk(t)

deteninistically, it follows that rk(t) is stochastically increasing in t.

Define g(t) - E(X - tix > t). Then:

(2.1) E(Y - tly > t) - g(t) + [ qk

Since F is EML, g is decreasing. Thus Eg(~kt)) is decreasing. From (2.1)

it follows that Y is DtRL.

A similar argumnt holds for F ML. II

Remark. We do not know whether Theorem 2.2 can be extended to the NBUE

and NWJE cases.
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3. bnotonicity Properties.

Define u(p) - fx dFp(x) - JP(x)dx. Theorem 3.1 presents monotonicity

properties of u(p).
1

3.1. Theorem. (i) Let FbeNBJE. Then u(p) : -ji() for 0 < p r 1.
p

(ii) Let F be NE for all p in (0, I1j. Then p u(p) is tncreasing for
p

p (0, ij. In particular, this monotonicity holds for F NBU or IURL.

(iii) Dual results hold for the NWUE, NWU, and IRL classes.

Proof. (i) Let Y have distribution F and N denote the number of the~p

failure which results in the first perfect repair. Since F is NBUE, then
1

E(YIN - n) : n u(1). Thus U(p) - EY - E(ECYIN)) g u(l)EN - - u().(ii)Sinc %() £ (t)PJ/P2
(ii) Since T (t) F(t) and F is NBUE, it follows from (i)that for

pi P2

P1 < P2 1 U(P) :5 - u (p2)• Thus p u(p) is increasing. If F is NEU (IM), then by

Lemma 2.1, Fp is also NHJ ( R4L), and is tnus NBUE.

(iii) The results follow by the arguments in (i) and (ii). I

The inequality: Pl u (Pl) : P2 u(P 2 ) for p1 < P2 when Fp is NE for all

p a CO, 1) can be interpreted as: FPl is smaller in expectation than a geometric

sum (with parameter pl/P2 ) of i.i.d. random variables having distribution Fp
p2

When F is NIU, "smaller in expectation" can be strengthened to

"stochastically smaller".

3.2. Theorem. Assume that F is NEU and p1 < P2. Suppose that

Y ~ Fp1, (Zi , i k 1) is an i.i.d. sequence with distribution FP2, and that N

is a geometric random variable with parameter pl/P2, independent of
N

{Zi, i k 1}. Then Y is stochastically smaller than Zi . A dual result holds

for F MNJ.

Proof. We prove the result for p1  p, P2 "1. By the argument in the

proof of Th. 3.1(11) ranI by the fact that Fp is NBU (Th. 2.2), the desired

conlusin will follow in the general case.

- - LF
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First note that Y N Xi, where Xi denotes the interval between the (i - 1 ) s t

and the ith failures, and N is a geometric random variable with parameter p.
Since F is NEU, Xi is stochastically smaller than Zi given X, ... , X

(N 2 i}, for each i. We can therefore construct a version of (N, X1, ... , X 2

Z ... , ZN) with desired marginal distributions for (N, X1, ... , XN) and
1 NN

N ... ZN withX! Zip 1 .... N, a.s. Thu X :

from which it follows that Y Xi is stochastically smaller than
N I

zi. II

Let N Ct) denote the number of failures in FO, t) for the failure process

in which perfect repair has probability p. In Corollary 3.4 we prove that for

F NBJ, N (t) is stochastically decreasing in p. First we need a preliminary
p

lemma.

3.3. Lemna. Let F be NRJ and p - 0. Let Tk(t) denote the time of the

kth failure after time t. Then Tk(t) - t is stochastically smallest when t - 0.

Proof. N0 (t + x) - N0 (t) is governed by a Poisson distribution with
t+x

parameter f r(s)ds. Since F is NEU, then N0(t + x) - N0 (t) is stochastically
t

smallest for t - 0. But P[Tk(t) - t > xj - P[No(t + x) - N0 (t) i k- li,

which is maximized for t - 0. II

3.4. Corollary. Let F be NNJ(NI). Then Np(t) is stochastically decreasing

(increasing) in p.

Proof. Let (Ni, i ? 1) be i.i.d. geometric random variables with

parameter P2, S i " Ni p (Nil, i > 1) be i.i.d. geometric random variables with

paru er p/p 2 , N' - S and D! - S! - S-" Then (Dq, j a 1} is

a sequence of i.i.d. geometric random variables with parameter pl.

I ____
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Next we construct two failure processes as follows. Process 1, with

parameter pl, has perfect repair of the S th failure, of the "*th failure,

... ; Process 2, with parameter P2 , has perfect repair of the Sth failure, of

the S h failure, .... Let T (k) denote the time of the kt h failure in

Process i, i - 1, 2. We wish to prove that TY(k) is stochastically smaller

than T2 (k) for all k, from which the desired conclusion imediately follows.
By Theorem 3.2, TI(S) is stochastically smaller than T2 (S ) for all

j a 1. Now condition on {S!, j z 1). Given k, find j such that

-S* k < S4. Now T1 (k) T1 (S .l) + A, where A, is distributed as the time

until the (k - SIl)th failure in a failure process with p - 0.

Also T2 (k) - T2 (S .) A2 , where A2 is distributed as the conditional

distribution of the time until the (k - Sl)th failure in a failure process

with parameter P2 ' given the information as to which, if any, of the k - S!

-:pairs are perfect. It follows from Lenma 2.1 that A2 is stochastically

lagrthan A, Since T(S (Sisgeae!3i large than Since 2(S' 1) is stochastically greater than T(.)

A1 and T,(S*.) are independent, and A2 and T2 (S.l) are independent, the

desired conclusion follows.

3.5. Theorem. Let F be IFR. Let Zp denote the waiting time until the

next failure, starting in steady date. Let h denote the failure rate

function of Z p. Then, (i) for each t ,Q hp(t) is decreasing in p; (ii) as a

consequence, Zp is stochastically increasing in 2. (iii) Dual results hold for

F DFR.

Proof. (i) The effective age of a component in steady state is the time

since the last perfect repair. Since the successive time points of perfect

repair form a renewal process with interarrival time distribution F the

*
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steady state age density is 1PP(x)/,i(p). Since for p1 < P2, pPl(x)/-'2P(x) is

increasing in x, it follows that the family of densities:

(3.1) ypCx) Y(X)Fp'(x) , X a 0,

f y(x)PP(x)dx
0

has decreasing monotone likelihood ratio in p for each nonnegative function y

satisfying f y(x)P(x)dx < -. Thus the distribution with density yp is
0

stochastically decreasing in p, 0 < p s 1.

Next note that:

00 ( t+ X)

hp(t) = 
(p )

7PW -(t + x) x
0 0 (x)

" f r(t + x) yp (x)dx,

with JP dr.finee by (3.1) with y(y) = F(t + x)/ (x). Since r is incre&.sir,g and

y is stochastically decreasing in p, then h (t) is decreasing in p.
,hp(t)dt

(ii) Since FZ (s) = e- J  , it follows that Z is stochastically
p P

increasing in p.

(iii). The dual results are obtained in a similar fashion. II

A weaker conclusion is obtained under the weaker assumption of F IMRL(IMRL):

3.6. Corollary. Let F be IDRL(IMRL). Then EZp is increasing (decreasing)

in p.

Proof. Let F be fl4RL. Then g(t) = E(X - tiX > t) is decreasing. We

may express:

k7
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EZp - f g(t)dt.

Since ' is the density of a distribution stochastically decreasing in p, it

follows that EZ is increasing in p.
p

A similar argument yields the result for F DIRL. I

In all the results above, conclusions were obtained for dual families of

distributions corresponding to deterioration with age and improvement with age.

The following result applies for DFR distributions, but the dual result is known

not to necessarily hold for IFR distributions.

3.7. Theorem. Let F be DFR. Let Z (t) denote the waiting time at t
p

for the next failure to occur; let Z*(t) denote the waiting time at t for

the next perfect repair. Let m p(t) denote the failure intensity at t and let

m*(t) denote the renewal density at t for the renewal process with interarrival
p
time distribution F . Finally, let A (t) denote the effective age at time t,

p p
i.e., the time elapsed since the last perfect repair. Then:

(i) Ap(t), Zp(t), and Z (t) are stochastically increasing in t for

fixed p; m (t) and m*Ct) are decreasing in t for fixed p.
p p

(ii) A Ct) and Z (t) are stochastically decreasing in p for fixed t,
p p

m pCt) is increasing in p for fixed t.

ppProof. Ci) Since F is DFR, it follows from Brown (1980), Theorem 3,

that Ap(t) and Z*(t) are stochastically increasing in t and that niCt) is

decreasing in t. Since PCZ (t) > x] f(x + Y) dFA (y F(x . y) is
p (y) Fcy)

increasing in y, and FAp(t) is stochastically increasing in t, it follows

that P[Z (t) > x] is increasing in t. Finally, m (t) pm(t), so that

a p(t) is decreasing in t.

ip

* .,I .iS
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(ii) For p , 2' r 2t) = P2r(t) a plr(t) - sup r (s). It follows
< P2 P2 t P1

from Theorem 1 of Brown (1980) that we can construct a random variable C with

distribution Fp , a sequence (Bi., i k 1) of i.i.d. random variables withN

distribution FP2 , and a stopping time N such that C = Bi a.s. By employing

this construction, we generate a bivariate failure process with marginals which

are failure processes with parameters pl, P2' and for which every p1 perfect repair

time epoch is a P2 perfect repair time epoch. Thus under this construction,

A (t) a A (t) deterministically. It follows that A (t) is stochastically

decreasing in p for fixed t. Since P[Z p(t) > x] f FF(y y) dFAp (t ) (y ), it

follows that Z p(t) is stochastically decreasing in p for fixed t. Since M (t)

Er(A p(t)), r is decreasing and A p(t) is stochastically decreasing in p, it

follows that mp(t) is increasing in p. I
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